Exceptional Species

What is the standard for determination of Exceptional Species status?

Is it only species that have seeds that exhibit no viability in both desiccation and cold? Or is it a lower bar of reduced viability in both, and if so, how reduced?

Question Category: 

Joyce Maschinski, Center for Plant Conservation and Valerie Pence, Cincinnati Zoo & Botanical Garden

Crotalaria avonensis is an endangered legume endemic to Florida that produces few seeds. In vitro shoot cultures of multiple genotypes have been grown at CREW to provide genetic diversity for restoration and for tissue cryopreservation. These cultures harbor a bacterium, identified as Paenibacillus sp., which may be a natural endophyte in the species. The bacterium grows slowly and does not appear to inhibit the in vitro propagation of the species, but its effect on the recovery of shoot tips after the stress of cryopreservation was investigated. Samples banked using encapsulation vitrification and representing 63 genotypes were evaluated after 4 - 15 years in liquid nitrogen. The rate of recovery growth of samples with visible bacteria was significantly less than samples without bacteria. Similarly, when newly banked shoot tips of 15 genotypes were cryopreserved using an improved technique, droplet vitrification, and were recovered, the presence of antibiotic in the medium significantly increased the percent of shoot tips showing recovery growth. Whereas C. avonensis shoots can be propagated, rooted, and acclimatized in the presence of this bacterium, recovery after the stress of cryopreservation is reduced when the bacteria are present. An increasing number of plant species are being shown to have endophytes in the wild and removing such endophytes may not be possible or desirable in culture. These results with C. avonensis demonstrate the potential for controlling the negative effects of such microorganisms in vitro. This is one example of the particular challenges that may be presented in working with wild species and conserving endangered exceptional plants. Supported in part by grants from the Institute of Museum and Library Services.

Contributing Author(s): 
Date Recorded: 
Friday, May 4, 2018

Although many rare plants have seeds that can be stored by conventional methods, not all species have seeds that can live after drying or freezing. Sometimes called "Exceptional plants, " these species have a wide range of variation. Some produce few or no seeds, thus they cannot be seed banked, others have seeds or spores that will die if dried or frozen, while others have seeds that can tolerate drying, but not freezing, and another group have seeds that live less than 10 years at freezing temperatures. Recent studies suggest that there are many rare plant species that need alternative storage for conservation. This video describes a procedure for  testing whether rare plants can be stored in liquid nitrogen successfully.

Date Recorded: 
Friday, March 1, 2019

Jordan Wood, Jeremie Fant, Andrea Kramer and Kay Havens, Chicago Botanic Garden

Genetics becomes important whenever populations become small (<100). This includes loss o fgenetic diversity from drift, increased expression of deleterious genes due to inbreeding, and limiting local adaptation. Since many species of plants are able to be seed banked, it is possible to maintain numbers well above these critical genetic thresholds. However for exceptional species, which can only be maintained as living plants, or for critically endangered species where remaining individuals are already below these numbers, the need to consider the remaining genetic diversity becomes critical. Importantly, the management focus shifts from saving a population to preserving each genetically unique individual. When you have such small numbers, it is critical to know how each individual contributes to the overall genetic diversity remaining. We are working with National Tropical Botanic Gardens (Hawaiʻi) to develop a multi-institution species management and breeding plan for Ālula(Brighamia insignis)that will ultimately support its restoration to the wild. To do this we are working with scientists at the Chicago Zoological Society to modify management software that incorporates genetics and demography information to maintain the long-term health of their captive populations of animals over the long term. Through this case study, we hope to develop collections management practices for plants that preserve important genetic diversity while identifying genetically appropriate individuals to using in crosses and that can ultimately be used to create resilient populations that can be used in reintroductions.

Contributing Author(s): 
Date Recorded: 
Friday, May 4, 2018